

Available online at www.sciencedirect.com

Applied Surface Science 247 (2005) 115–122

www.elsevier.com/locate/apsusc

Gravimetric and profilometric measurements of the ablation rates of photosensitive polymers at different wavelengths

Th. Dumont ^a, R. Bischofberger ^b, T. Lippert ^{a,*}, A. Wokaun ^a

^a *Paul Scherrer Institut, OFLB/U110, CH-5232 Villigen, Switzerland*

^b *Applied microSWISS GmbH, CH-9471 Buchs, Switzerland*

Available online 16 February 2005

Abstract

The ablation rates of two polyimides (PMDA and DurimidTM) and one triazene polymer were studied by gravimetric (quartz microbalance) and profilometric (profilometer) methods at irradiation wavelengths of 193, 248 and 308 nm. The ablation rates determined by the two methods are discussed in the context of the absorption behavior of the materials. Furthermore, the consistence of the two experimental methods is discussed for the ablation rates of DurimidTM and the triazene polymer. The gravimetric measurements revealed a good correlation between the ablation rate and the absorption properties of the examined materials. The comparison of the gravimetric and the profilometric measurements suggest a significant mass removal, e.g. by formation of gaseous products, prior to the detection of changes in the surface morphology.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Polyimides; Quartz microbalance; Profilometer

1. Introduction

UV laser ablation of polymers is the objective of intense experimental and theoretical research due to the potential applications in many fields (chemistry, physics, biology, and electronics) [1–3]. Studies of the laser-induced decomposition or transformation of polymers with single pulses and laser fluences close to the threshold of ablation require very sensitive

techniques, such as a quartz crystal microbalance (QMB), atomic force microscopy (AFM) or profilometry. One important question in polymer ablation is related to the ablation mechanism, i.e., photochemical versus photothermal. The understanding of these mechanisms is important for the design of new materials (e.g. photosensitive polymers) or the optimization of existing industrial processes. Models also play an important role in the understanding of these mechanisms. The mass loss during laser irradiation is one important parameter for the development of theoretical models that describe ablation.

* Corresponding author. Tel.: +41 56 310 4076; fax: +41 56 310 2688.

E-mail address: thomas.lippert@psi.ch (T. Lippert).